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Abstract 
 
A 2-stage detector was designed to find rho-independent transcription terminators in the Escherichia coli genome. The detector 
includes a Stochastic Context Free Grammar (SCFG) component and a Support Vector Machine (SVM) component. To find 
terminators, the SCFG searches the intergenic regions of nucleotide sequence for local matches to a terminator grammar that was 
designed and trained utilizing examples of known terminators. The grammar selects sequences that are the best candidates for 
terminators and assigns them a prefix, stem-loop, suffix structure using the Cocke-Younger-Kasaami (CYK) algorithm, modified to 
incorporate energy affects of base pairing. The parameters from this inferred structure are passed to the SVM classifier, which 
distinguishes terminators from non-terminators that score high according to the terminator grammar. The SVM was trained with 
negative examples drawn from intergenic sequences that include both featureless and RNA gene regions (which were assigned prefix, 
stem-loop, suffix structure by the SCFG), so that it successfully distinguishes terminators from either of these. The classifier was found 
to be 96.4% successful during testing. 

 
 
Introduction  
 
Two types of transcription terminators, named for their 
operating mechanisms, have been found to exist in bacteria: 
rho-dependent and rho-independent terminators.  Detection of 
terminators has been challenging due to the  lack of clear 
signals in their genetic sequence, such as is provided to  
protein gene detection by start and stop codons.  However, 
there are structural features present in the class of rho-
independent terminators that may be exploited to aid in their 
detection.  
 
For a rho-independent terminator, the ability to function 
effectively is largely due to formation of a stem-loop. This 
secondary structure, rather than sequence, is the phenotype 
selected for in the evolutionary process. The same structures 
may result from different sequences of nucleotides adenine, 
cytosine guanine and uracil (a,c,g and u). Therefore sequences 
may be evolutionarily related while not conserved, as long as 
their structures are conserved by compensatory mutations. 
(For example, a stem cg pair can be replaced by  gc, au, ua gu 
or ug pair.) Unsurprisingly, it has been found that rho-
independent terminators do not share general consensus 
sequence [1]. Our approach to terminator detection is to infer 
structural information from sequence alone, then use both 
sequence and inferred structural parameters to classify the 
sequence as terminator or non-terminator.  
 
 

Background 
Terminator Detection 
 
Transcription is the process by which a copy of the coding 
(nontemplate) strand of a gene is produced, except that 
thymine (t) in DNA is replaced by uracil (u) in RNA, resulting 
in an RNA transcript. The final phase of transcription is 
termination, which can be signaled in rho-independent 
terminators by the formation of a stem-loop within the RNA 
polymerase (RNAP), inducing the pausing of the transcription 
elongation complex (TEC) just as the RNAP encounters weak 
au bonds at the terminator tail, causing the dissociation of the 
TEC from the RNAP and the release the protein or RNA gene. 
 
A model attributed to Carafa et al [2] describes DNA sequence 
for rho-independent terminators. An RNA hairpin (stem-loop) 
is followed by a 15 nucleotide (nt) long region rich in 
thymidine (the nucleoside of thymine) which may be 
separated by a spacer region of up to 2 nts. An adenoside-rich 
region was described upstream of the hairpin (but not used in 
their scoring system).  Fig. 0 depicts the canonical terminator, 
based upon the Carafa model, that was used in this project. 
Carafa et al developed a 2-stage process to detect and classify 
candidate terminators which takes into account structural 
information such as free energy of the RNA hairpin, along 
with stem and loop length. Sequence information such as the 
number and positions of thymidine residues, and the fraction 
of cg pairs in the stem is also used. This algorithm 



successfully distinguishes between terminators and both 
random sequence and protein coding sequence. 
 
Other researchers have built upon the Carafa model to create 
terminator detectors. The 2-stage process of Ermolaeva et al 
[3] utilized location and orientation information, their own 
representation of the stability of stem-loop structure, and the 
Carafa tail-scoring function. Lesnik et al [4] devised an 
algorithm utilizing sequence parameters and allowing the user 
to define constraints upon structure. Their thermodynamic 
scoring system accounts for the preference of stem-loop 
structure over bonding to DNA at the point of transcription 
termination. More recently, de Hoon et al [5] used a logistic 
regression model to arrive at a decision rule for predicting rho-
independent terminators in B. subtilis and related species. 
While these methods detect more known terminators than 
Carafa et al, they report a tradeoff between finding more 
known terminators (true positives) and getting more false 
positives. Also, this sensitivity/specificity tradeoff is hard to 
quantify since many terminators have yet to be experimentally 
determined so numbers of true and false positives in these 
studies are estimates. Some studies count the terminators 
found by their algorithm as true positives along with 
experimentally determined terminators as long as these 
putative terminators satisfy location and scoring standards. 
Ermolaeva et al, who create a polynomial approximation to 
estimate frequency of false positives, report finding 567 
terminators in E. coli with specificity of 98%. This specificity 
indicates that the authors regard 555 of the terminators found 
by their algorithm as true terminators, which is far higher than 
the number of experimentally determined terminators. At this 
specificity they reportedly find 89% of all true terminators 
(sensitivity). 
 
The success of Hidden Markov models in statistical modeling, 
database searching and multiple alignment of both promoters 
and protein genes has prompted researchers to look to 
grammars to incorporate long range interactions into feature 
detection. Hidden Markov models are equivalent to stochastic 
regular grammars, where sequence is generated from left to 
right [6]. Features that have stem-loop structures caused by 
base pairs that are nested can be generated by a context-free 
grammar, emitting sequence from outside to inside rather than 
from left to right. Stochastic context-free grammars (SCFGs) 
capture both sequence and structural information and have 
been used successfully to model RNA genes by Eddy and 
Durbin [7] and tRNA genes by Sakakibara et al [8]. SCFGs 
were used to model terminators by Bockhorst and Craven [9], 
as a test case to show that a deficient SCFG could be refined 
in an iterative process. Their paper states that preliminary 
results indicate that the refinement method produced an SCFG 
that improved the accuracy of the model, but the success rates 
themselves were not reported.  
 
For this project, a Stochastic Context Free Grammar (SCFG) 
was developed to utilize both sequence and structural 
information to detect terminators from genomic sequence. To 

refine the detection process, a support vector machine (SVM) 
was coupled with the SCFG. The SCFG selects likely 
candidates for terminators from sequence, and designates 
subsequences of each as prefix, stem, loop and suffix. This 
information is passed to the SVM, which was trained to 
distinguish between terminators and those non-terminators 
that were assigned high scores by the SCFG. The terminator 
grammar of Bockhorst and Craven was not used, because the 
grammar was reported to be deficient and also involves a 
trifurcation that is computationally intensive. Rather, a 
grammar was developed to select sequence that can take on 
the structure of the Carafa canonical rho-indedpendent 
terminator.  
 
Stochastic Context-Free Grammars 
 
A Grammar is a set of rules, called productions, together with 
a set of abstract symbols called non-terminals and a set of 
emitted symbols called terminals. Together these 3 sets 
characterize the set of legal strings, the language of the 
grammar, which are those strings that can be derived by 
iterative application of the productions. Grammars having a 
set of terminals consisting of {a,c,g,t} have been used for 
modeling strings of nucleotides, such as genes.    
 
The structure of a stochastic context-free grammar is that of its 
underlying context-free grammar G.  G can be formally 
defined as G={N,T,P,S} where N is a finite set of nonterminal 
symbols (“states”), T is a finite set of terminal symbols 
({a,c,g,t} for nucleotides), P is a finite set of productions of 
the form A→ Γ, where A € N , Γ € (NU T)*, and S is the start 
nonterminal (S € N).  This means that the right hand side of a 
production may consist of any combination of terminals and 
nonterminals, while the left hand side must be a single 
nonterminal. A particular iterative application of productions 
that result in a string x is referred to as a derivation or may be 
viewed as a parse tree, Π, for x.  
 
An SCFG assigns a probability to each production rule in P 
such that all the productions from any given nonterminal sum 
to 1. The set of these probabilities is referred to as the 
parameters of the model, θ. A sequence x may have a higher 
probability (score) with one model than with another. The 
probability P(x,Π | G,θ) is the probability that a particular 
derivation (parse tree) Π generates string x given structure G 
of the underlying context-free grammar and the probabilities θ 
associated with the productions. This is simply the product of 
all the production rules used in the parse tree Π for sequence 
x. An SCFG describes a joint probability distribution P(x,Π | 
G,θ) over all sequences x and all possible parse trees Π. 
 
SCFGs are generalizations of hidden Markov models 
(HMMs), which are equivalent to stochastic regular grammars. 
In addition to primary sequence, modeled in left to right string 
generation by HMMS, SCFGs model secondary structure in 
outside to inside generation of strings. The HMM algorithms 
for solving problems of detection, alignment and parameter 



estimation have analogs for families modeled by SCFGs. 
These dynamic programming algorithms start with 
subsequences of length zero and consider larger and larger 
sequences by incrementally extending them. In the case of 
HMMs, subsequences are extended leftwards by 1 nt at a time, 
whereas for SCFG models, subsequences are extended 
outwards by 2 nt at a time, capturing pair interactions.  
 
For this project, genomic sequence needs to be parameterized 
into likely terminator structure so the SVM could be trained to 
detect which are terminators. To accomplish this the Cocke-
Younger-Kasaami (CYK) algorithm is used for alignment to 
the structure and model. Rather than taking the sum of 
probabilities of parse trees as is done in scoring, these 
alignment algorithms find the argmax of the probabilities for 
parse trees. The end result is log P(x,Π* | G,θ) where Π* is the 
most likely parse for x given the grammar structure and 
model. A traceback can be coded to reveal Π*.  
 
Support Vector Machines 
 
Support Vector Machines (SVMs) are a relatively recent 
addition to the field of machine learning. They were 
introduced by Vapnik and began to be widely used in 
classification in the 1990’s.  SVMs are trained with a learning 
algorithm from optimization theory that implements a learning 
bias derived from statistical learning theory to search a 
hypothesis space of linear functions operating on data that has 
been pushed into a high dimensional feature space [10]. 
Basically, an SVM is a hyperplane classifier which finds the 
optimal hyperplane to separate data into classes. When 
dividing two classes, the optimal hyperplane is orthogonal to 
the shortest line connecting the convex hulls of the two 
classes, and intersecting it halfway between the two classes at 
a perpendicular distance d from either class, creating a margin 
of 2d between the classes. The support vectors are those 
elements of the training set that lie on the margins of either 
class (at a distance d from the separating hyperplane). It is 
these training examples that are relevant to the algorithm. It is 
these training examples, rather than the centers of clusters, that 
are critical for finding the margins between the classes. 
Complexity of the algorithm may be reduced by removing the 
other training examples from the kernel expansion. It can be 
shown by geometry that the margin we want to maximize 
equals 2/||w||2, so the unique optimal hyperplane is found by 
solving the optimization problem: 
 
 Minimize   T(w)  =  ½ ||w||2                                    (1) 
 
              Subject to  yi  . ((w . xi) + b)  >=  1,       
                   i= 1,2,…,m 
 
where ||w||2 is the norm of the separating hyperplane and xi is 
the n dimensional vector representing the ith data point of m 
data points. The minimization of this optimization problem is 
solved using Lagrange multipliers and minimizing the 
Lagrangian.        

SVMs have the ability to find a separating hyperplane even if 
one does not exist in the space of the input vector, as long as 
the training data may be mapped into a higher dimensional 
feature space in which such a separating hyperplane exists. 
The kernel function is used to compute the separating 
hyperplane without actually having to carry out the mapping 
into higher dimensional space. 
 
To allow for noise in the data that would preclude perfect 
classification, a slack variable can be introduced in order to 
relax the constraints to : 
 
           Subject to  yi  . ((w . xi) + b)  >=  1 - ei,                       (2) 
               i= 1,2,…,m 
 
           Where slack variables         ei >= 0,            
               i= 1,2,…,m 
 
The amount of slack is specified by the user of an SVM in the 
variable C, which gives the upper bound on the Lagrange 
multipliers in the optimization problem. A lower value of C 
limits the influence of outliers on the solution. 
 
Choice of kernel determines both the class of functions from 
which the solution is taken and the type of regularization that 
is used in minimizing the regularized risk, which limits the 
complexity of a function class, helping to avoid overfitting. 
The common kernels used are Gaussian RBF, polynomial, 
sigmoidal, and inverse quadratic [12].   
 
Methods 
Terminator Grammar 
 
Because protein genes are generally easy to detect due to the 
presence of start and stop codons, this project incorporated the 
often-used strategy of searching only those regions between 
protein genes to detecting features such as terminators. A 
crucial requirement is that the detector be able to distinguish 
terminators from RNA genes, which also have stem-loops.  
 
The terminator structure modeled by the grammar is prefix, 
followed by stem-loop, followed by suffix (Fig. 2). The 
grammar is simple, using software rules to enforce 
requirements such as minimum stem length, rather than 
complicating the grammar. Also rather than using a 
computationally intensive trifurcation from the start state into 
3 states of prefix, stem-loop and suffix as Bockhorst and 
Craven do, this terminator grammar uses a simpler emissions-
based approach that requires only a bifurcation. Productions 
for the terminator grammar are: 
       S → L R  
       R→ Rb | P 
       P → aPa` | L  
       L → bL | end 
where S is the start state, R is the state for rightwise emission, 
P is the state for pairwise emission and L is the state for 
leftwise emission. 



Fig. 0.   Canonical Terminator 

Fig 1.  State Diagram for Terminator SCFG 
 

 
 
A state diagram is represented in Fig. 1, including transition 
probabilities. Probability matrices for single emission and 
pairwise emission complete the model. A terminator can be 
modeled using only leftwise (or rightwise) single-emission. 
However, the outside to inside generation of stem-loop 
requires an end state from the loop, as well as from either the 
prefix or suffix. Also, only one transition into the stem-loop is 
allowed in a terminator, so a single-emission state separate 
from the loop state is required. This necessitates 2 single-
emission states, However, both of them could just as easily 
emit either rightwise or leftwise, as with the alternative 
grammar of Fig. 2.  
 
For the purposes of illustrating the grammar, an overly simple 
“toy” terminator (with only 2 nts for prefix, stem length, loop 
and suffix) is used in Fig.3 (derivation) and Fig. 4 (parse tree). 
Fig. 5 illustrates the CYK algorithm that was written to scan 
large sections of genome for local matches to the grammar. 
Although the toy terminator of Fig. 2-5 is only 10 nts (too 
short to be an actual terminator) and the match is global to 
simplify the illustration, the intergenic stretches of genome 
searched may be longer than 5000 nts. For this reason the 
matrix structure used by the CYK algorithm of this project is a 
variant [6] of the familiar LxL structure, which would require 
O(ML2) space and O(ML3) time. Instead, the entire string of 
length L is searched for local matches of at most length D = 
min{L, max terminator length}. D is therefore capped at 70, 
which shortens the space requirements of CYK algorithm to 
O(MLD) and time complexity to O(MLD2).  
 

The (LxD) matrix structure is depicted in Fig. 5, one of which 

e 

he parameters of the grammar model were trained using a 

oftware and Datasets 

he Support Vector Machine toolbox for Matlab, Version 

ig. 2.  Alternative Terminator Grammar 

is required for each of the M states to make up the full three  
dimensional data structure. Each of the MLD cells takes tim
O(1) (proportional to the number of transitions from the state) 
to fill, except for state S, which has a bifurcation and so takes 
O(D) to fill, resulting in total running time of O(MLD2). The 
score resulting from the CYK algorithm coded for this project 
gives a different result that than the familiar log P(x,Π* | G,θ), 
because a value was added for base pairing (as in the Zuker 
algorithm [7]), to account for energy of folding affects.  
 
T
randomly selected subset of the known terminators. Initial 
priors for emissions and transitions were established by 
statistical analysis of the training subset as folded by a locally 
developed rule-based algorithm. This initial model was then 
used by the grammar to select a parse (prefix, stem, loop, 
suffix structure) for each terminator. Counts were taken of 
frequencies of emissions and transitions, the model parameters 
were updated based upon these counts. The process was 
iterated until structure was stable.  
 
 
 
S
 
T
2.51, was used to construct and train the SVM that classified 
the data [12].  Locally developed software produced negative 
examples, implemented a modified CYK algorithm, trained 
the terminator SCFG and calculated parameters. Datasources 
were the complete E coli genome sequence and annotations 
compiled at the University of Wisconsin-Madison [13], which 
are available on the web. The sequence used was the M54 
version of the K-12  MG1655 strain of E. coli. The sequences 
used for positive examples were all 109 known terminators 
found within -10 to 60 nts from the end of a gene as 
documented by Lesnik et al. Negative examples were drawn 
from both strands of the genome. This was accomplished by 
starting with the entire strand and removing known genes of 
either strand as well as a trailing region of 300 nts in order to 
minimize the possibility that unknown terminator sequence 
would comprise part of the set of negative training examples. 
The sequences of the 168 known RNA genes were added to 
the intergenic sequences to form the set of sequences from 
which negative examples were drawn. Some of the sequences 
were very long (up to 5000 nts) and contained many local 
matches to the terminator grammar. 
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       S → L X    
       L→ bL | P 
       P → aPa` | X  
       X → bX | end 
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Fig. 2.   Structure of Simplified Terminator                                        Fig. 4.   Parse Tree for Derivation of “tcctccagtt”   
 

 
 
 
Fig. 3.  Derivation of Simplified Terminator   
  S →       L    R             
     →    t  L    R 
     →  t  cL    R 
     →  t  c€     R 
     →  t  c       R  t 
     →  t  c       R t   t 
     →  t  c       P  t   t 
     →  t  c    cPg    t  t 
     →  t  c c  tPa   g t t 
     →  t c c t  L  a g t t 
     →  t cct  cL   a g t t 
     →  tcct  c cL a g t t 
     →  tcct  c c€ a g t t 
     =      tcctccagtt 
 
 
Fig. 5.   State path taken by global CYK algorithm performed on string  “tcctccagtt” 
 

 

 d:  1      2      3      4      5      6      7      8      9    10 
j:  1    t           
    2    c L L **         
    3    c           
    4    t           
    5    c           
    6    c L P→ L         
    7    a      P       
    8   g      R → P     
    9    t       R    
  10    t        R **  Score=S  

  
Collapsed view of the 4 arrays of the data structure which together form the 3 dimensional array structure for CYK algorithm 
Coordinate system: end position j vs subsequence length d, d = j–i+1 for subsequence(i:j)  being considered 
Horizontal (green) run is leftwise emission (prefix of length 2 and loop of length 2): shows path through green array (state L) 
Knight’s path (red) run is for pairwise emission (stem of length 2): shows path through red array (state P) 
Diagonal (blue) run is for rightwise emission (suffix of length 2): shows path through blue array (state R) 
Global score considers entire string = subsequence(1:10)  where  j=10, d=10: shows path through yellow array (state S) 
 
** S → LR at substring(1:10), adding scores from L of substring(1:2) and R of substring(3:10) 
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Experiment The test set was comprised of the 28 terminators that not 
 
For each sequence processed by the SCFG, the best local 
alignments (o  parses) were determined by the CYK 
algorithm. Thi i ffect, the selection of prefix, stem-loop 
and suffix structures for candidate terminators. A subset of 81 
known terminator sequences was randomly selected for 
training the p ers of the grammar model, as described in 
the Methods section. After training, these sequences were 
pr by FG likely parses of prefix, stem-loop 
and suffix structures. Each of these sequences contained one 
li w as p rized, resulting in a total of 81 
po am ich to train the SVM. The 

aining 28 positive sequences that had not been used in 
aining the SCGF were then processed into 28 positive 

 known RNA 
ere processed 

e examples.   

stem-loop and suffix structure inferred by the 
example, 17 parameters were 

meters represented fractions of a,c, and t 
tracted was the probability that the stem 
oop of the example would close the loop 
tor (as calculated by their frequency 
ng sequences as folded by the SCFG). 

6 dinucleotide pairs in the stem that 
tion (at cg ta tg gc gt) were extracted 

eing parameterized. The number of 
e stem and the first t following it was 

the tail scoring function of Carafa et al 
ummed over all the nucleotides of the prefix: 

                              xn =   xn-1 * 0.6 if nth nucleotide is not a t 
 
Additionally there were 4 structural parameters: prefix length, 
stem length, loop length and suffix length. The SCFG score of 
the alignment was included, resulting in the 17 dimensional 
input into the SVM for each example being classified. All 
parameters were normalized. 
 
Since there were many more negative than positive examples, 
negative intergenic and negative RNA gene examples were 
each randomly sampled to select the negative examples for the 
training  and test sets, allowing 5 times as many negative as 
positive (terminator) examples, proportionately representing 
featureless intergenic and RNA gene examples. The training 
set was therefore comprised of the 81 terminators that had 

e influence of outliers.  

been 
used to train the SCFG, along with 130 featureless intergenic 
examples and 10 negative RNA gene examples. An SVM was 
train set. 
96 , with detection of negative 
examples more successful than detection of positives. (table 
1). Cross-vali on was also used on the traini , resulting 
in 3 SVMs, wh  were then tested with the o inal test set.  
Results ranged from 97.0.5% to  97.6% correctly identified 
(table , with pos e examples being ected al ost as 
successfully as negative example (average 95.2%). Average 
prediction ac racy du g cross-vali on was 96.1% with 
average accu y of RNA genes prediction of 97.0  (table 3).  
 
Discussion 
 
There are 2 major aspects to t  de tion ethod:  1) the 
selection of likely candidates from e genome and their 
parameterization by the SCFG based upon inferring structure 
as well as upon sequence composition and ) the use of  an 
SVM to detect terminators from ese high ng candidates 
utilizing the extracted features.  
 
The success rates reported in tables 1-3 give a measure of how 
well the SVM accomplished the classification that it was 
trained to do. It is worthwhile to also evaluate each component 
of the 2-stage The SCFG retained local matches that scored 
above the cutoff, resulting in all k wn terminators being 
selected as likely terminators, along with 1063 more from 
among the negative examples. As described in t  Background 
section, there is a sensitivity/specificity tradeoff: if the SCFG 
were to function alone as a detector, the cutoff score would be 

es but reduced sensitivity of 
 selected by Ermolaeva et al. 

Instead, cutoff was selected to allow 100% sensitivity for the 
SCFG alone, allowing the SVM to refine the prediction. After 
passing these candidates through SVM, the sensitivity of the 
2-stage terminator detector was reduced to 92.9%, but the 
number of false positives went down to 4 (assuming none of 
the negative examples are as-yet-undiscovered terminators).  
A Receiver Operating Characteristics (ROC) curve is perhaps 
the best way to view the full situation of tradeoff between 
sensitivity and specificity. If the area under the ROC curve is 
0.9 or above, the classifier is considered good. As shown in 
Fig. 6, the SCFG alone has good performance: the area under 
ROC = 0.97, but when coupled with the SVM, performance is 
better: 0.99.  
 
Because of the structural similarity of RNA genes and 
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Future Work  

ifferent approaches might be tried to address the far greater 

ion of machine learning methods in the detection 
s poses a challenge due to the nature of their 

volutionarily conserved phenotype, which is the secondary 

toff to allow many terminator 
andidates, which were then classified by an SVM.
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The SCFG-SVM terminator algorithm would be more useful if 
a detector trained using examples from a well-annotated 
species could be used on an evolutionarily related but newly 
sequenced species with no known terminators. Future work 
would include testing this transferability by using the E. coli 
terminator detector on a different, but closely related species 
whose terminators are known.  
 
The SCFG component of the detector might work better if the 
loop state was separate from the prefix state, allowing for 
different emissions parameters. Another way to improve the 
SCFG might be to change the grammar structure to allow for 
single emission in the middle of the terminator stem, which is 
a part of the Lesnik model left out of this grammar in order to 
simplify it. 
 
D
numbers of negative examples than positive examples 
provided to the SVM. The approach of Meraz et al (2004)* 
might improve SVM performance by using successive 
iterations of a support vector machine to select improved 
current negative sets by selecting for maximum dissimilarity 

                 
 
                Table 1:   Test Results of SVM  Terminator Classifie
                                    terminator      terminator         neg ex            neg ex
                                                 correct            wrong              correct           wron

SVM  

to the positive set but also maximum distance to the negative 
set. The net affect is that the SVM decision boundary shrinks 
closer and closer to the positive set. Alternatively, it might 
improve results to use different C values for positive and 
negative examples such that the C value for positive examples 
is higher, weighting them more in the classification process.  
Also, the SVM might be better at detecting RNA genes if a 
greater proportion of the negative examples were drawn from 
RNA genes. 
 
 
Conclusion 
 
The applicat
of terminator
e
structure that the RNA takes on during transcription. The 
challenge is that given only sequence information, something 
must be inferred about the structure of the RNA. While a 
SCFG performed reasonably well by itself in inferring 
structure and detecting terminators, selection was much 
improved by raising the score cu
c

s  
     RNA genes      RNA genes           total                total           
          correct             wrong              correct            wrong 

0.9286 0.0714 0.9714 0.0286 0.8000 0.2000   0.9643 0.0357 
 

 
 

x  
g  

 
 
 

                Table 2:  Results of test set on Cross validation SVM
                                     terminator      terminator         neg ex            neg e
                                                 correct            wrong              correct           wron

SVM 1 

 Terminator Classifiers  
       RNA genes      RNA genes           total                total           
          correct             wrong              correct            wrong 

0.9286 0.0714 0.9786 0.0214 0.8 0.2 0.9702 0.0298
SVM 2 0.9643 0.0357 0.9786 0.0214 0.8 0.2 0.9762 0.0238
SVM 3 0.9643 0.0357 0.9786 0.0214 0.8 0.2 0.9762 0.0238
AVE 0.9524 0.0476 0.9786 0.0214 0.8 0.2 0.9742 0.0258

 
 
 
 
                Table 3:   Results of Cross validation for SVM  Term
                                     terminator      terminator         neg ex            neg e
                                                 correct            wrong              correct           wron

SVM 1 

inator Classifiers 
       RNA genes      RNA genes           total                total           
          correct             wrong              correct            wrong 

x  
g  

0.9259 0.0741 0.9850 0.0150 1.0000 0.0000 0.9750 0.0250
SVM 2 0.8889 0.1111 0.9774 0.0226 1.0000 0.0000 0.9625 0.0375
SVM 3 0.8889 0.1111 0.9568 0.0432 0.9091 0.0909 0.9458 0.0542
AVE 0.9012 0.0988 0.9731 0.0269 0.9697 0.0303 0.9611 0.0389



                         Fig. 6.   ROC curves show good detection with SCFG alone, but better with 2-stage detector 
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